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1. Scientific Abstract 
 

Hepatocellular carcinoma (HCC) is one of the most common fatal tumors 1, 2 with an 
annual global incidence of 1.2 million 3. In the United States, approximately 13,000 
new cases are diagnosed each year and the median survival is generally less than 6 
months 1, 4. Resection, transplantation chemoembolization, alcohol injection and 
cryoablation are potentially curative, but only in small, localized tumors 5-7. 
Unfortunately, most patients have advanced disease at diagnosis and current 
systemic therapies are largely ineffective. The development of novel treatment 
strategies is greatly needed. 
 
AFP is expressed during fetal development, but transcriptionally repressed shortly  
after birth 8. Certain tumors, principally HCC and germ cell tumors, express AFP  
and its measurement in serum plays an important role in diagnosis and monitoring 
responses to treatment 9. The normal function of AFP is unknown. It has been 
hypothesized to play a role in serum component transport since AFP has been  
shown to bind fatty acids, steroids and heavy metals 10-12. 
 
The idea that AFP can serve as a target for immunotherapy is not new. Efforts  
were reported in earlier tumor immunology literature that involved attempts to  
generate antibody responses 13-15. These were unsuccessful, in part due to high 
circulating levels of AFP that neutralized antibody. However, AFP-producing  
tumors would be expected to process and present on their cell surface AFP- 
derived peptide fragments in the context of major histocompatibility molecules,  
thereby becoming potential targets for cellular immune responses. These MHC-
restricted AFP peptides could potentially be recognized by the immune system 
provided that these T cells were not clonally deleted during the ontogeny of the 
immune system. Both murine and human T cell repertoires appear to contain  
“self” reactive T cell clones for such proven and putative tumor-rejection antigens  
as MART-1 16, 17, MAGE 18, 19, gp100 16, 20, carcinoembyronic antigen 21-24  
and others. It would be surprising if potential AFP-reactive clones could not be 
marshaled with an appropriate set of activation signals in an immunostimulatory 
environment. 
 
Dendritic cells (DC) are uniquely equipped to initiate immune responses due to high 
major histocompatibility (MHC) class I and II expression together with  
costimulatory molecule expression. Our strategy in examining human T cell 
responses to AFP was guided by our parallel studies of human T cell responses to  
the well characterized melanoma antigen MART-1 25. Robust responses could be  
generated in vitro by DC genetically engineered to express MART-1. DC transduced 
with a recombinant MART-1 adenovirus expressed this melanoma antigen at high 
levels and correctly processed and presented the immunodominant HLA-A*0201- 
restricted MART-127-35 peptide. MART-1 engineered human DC could be used to 
generate specific human T cell responses in vitro. We have reported a murine 
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MART-1 model in which potent CTL, cytokine-producing T cells and protective 
immunity are generated after immunization with MART-1-engineered DC 26-29. A  
trial using DC genetically engineered to express MART-1 using a replication  
defective adenoviral vector (AdVMART1) has been approved by the ORDA, and  
the clinical grade vector is being produced for us by Molecular Medicine, San  
Diego, CA (see letter of cross-reference in Appendix ii). Additionally, another  
clinical trial using adenoviral transduction of DC is underway in Dana Farber  
Institute (see abstract by Kaplan et al in Appendix vii). We have exploited these  
potent antigen presenting cells, as well as other genetic immunization strategies to 
investigate human T cell responses to AFP. 
 
In a murine model, two genetic immunization strategies were employed to  
determine if AFP could serve as a target for T cell immune responses. We utilized  
the AdVmAFP to transduce murine DC, and used these DC expressing high levels  
of mAFP to immunize C57 BL/6 mice. This immunization strategy generated  
potent antitumor responses. The growth of tumors expressing mAFP was  
significantly delayed, with three vaccinations being marginally better than one.  
Tumor growth retardation was dependent upon both CD4+ and CD8+ T cell  
subsets. The immunization was able to generate mAFP specific CTL which lysed  
mAFP+ targets in a cytotoxicity assay. In addition, mAFP antigen-specific IFNγ 
producing splenocytes were also generated. The second genetic immunization 
strategy utilized was i.m. plasmid immunization comparing the mAFP cDNA in  
an expression vector with the backbone vector only or the human MART-1 cDNA  
in the same backbone. Naked DNA was also able to generate antigen-specific 
antitumor responses, splenic CTL and IFNγ-producing cells, but the response was  
far less impressive than with AdVmAFP transduced DC 30. 
 
We have investigated potential HLA-A*0201-restricted epitopes from human  
AFP both in vitro, in human T cell cultures, and in vivo, in HLA-A*0201/Kb 

transgenic mice. We have collected compelling evidence that the  
immunodominant epitope is hAFP542-550. Human T cells stimulated with DC 
transduced with AdVhAFP recognize hAFP542-550 in both cytotoxicity assays and  
by secretion of IFNγ in ELISPOT assays. Conversely, hAFP542-550 -specific  
cultures generated from peptide-pulsed PBMC recognized AFP+ cells (both 
autologous lymphoblastoid cells stably transfected with hAFP and HLA-A*0201+ 
melanoma cells stably transfected with hAFP, compared to untransfected parental 
cells) in both cytotoxicity and cytokine-release assays 31. 
 
HLA-A*0201/Kb transgenic mice are an excellent animal model for  
immunotherapy, since these mice are able to present the same antigenic epitopes  
as HLA-A*0201 human subjects. HLA-A*0201/Kb transgenic mice that were  
immunized with syngeneic DC transduced with AdVhAFP likewise recognized  
hAFP542-550 in both cytotoxicity and cytokine release assays. Also, transgenic  
mice immunized with hAFP542-550 peptide emulsified in IFA recognized AFP+  
cells in both assays. Taken together, this body of data indicates that hAFP542-550 is a 
naturally processed and presented epitope of AFP restricted by HLA-A*0201, 
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which is sufficiently immunogenic in vitro and in vivo to generate CTL against 
AFP-expressing tumors 31. The use of AdVhAFP transduced DC should enable  
the DC to process and present all of the potentially immunogenic AFP epitopes to 
the immune system, including hAFP542 550, generating a polyclonal anti-AFP 
response. 
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